Determine the limit algebraically, if it exists.

1)
$$\lim_{x \to 4} \frac{x^2 + 4x - 32}{x^2 - 16}$$

2)
$$\lim_{x \to \Theta} \frac{\frac{1}{x+6} - \frac{1}{6}}{x}$$

3) $\lim_{x \to 4^{-}} \frac{|x-4|}{x-4}$

Find the indicated limit.

4) a)
$$\lim_{X \to \Theta^+} \frac{7x}{|x|}$$

b)
$$\lim_{X \to \Theta^-} \frac{7x}{|x|}$$

c)
$$\lim_{X \to \Theta} \frac{7x}{|x|}$$

Evaluate or determine that the limit does not exist for each of the limits for the given function f.

5)

$$f(x) = \begin{cases} -2x - 2, & \text{for } x < 1, \\ 1, & \text{for } x = 1, \\ -4x + 8, & \text{for } x > 1 \end{cases}$$
(a)
$$\lim_{x \to \frac{1}{4} -} f(x)$$
(b)
$$\lim_{x \to \frac{1}{4} +} f(x)$$
(c)
$$\lim_{x \to \frac{1}{4}} f(x)$$

2

Find the points of discontinuity. Identify each type of discontinuity. Use limits to defend your choice. 7) $y = \frac{x+4}{x^2 - 14x + 48}$

For problems 8 and 9 find all points where the function is discontinuous. Then identify any x-values where the function is not differentiable. Be specific which points are discontinuous and/or which are not differentiable.

8)
$$f(x) = \begin{cases} \frac{x^2 - 16}{x + 4}, & x \neq -4\\ 10, & x = -4 \end{cases}$$

Find a value for a so that the function f(x) is continuous. 10) $f(x) = \int x^2 - 5$, x < 4

10)
$$f(x) = \begin{cases} x^2 - 5, & x < 4 \\ 5ax, x \ge 4 \end{cases}$$

11) Sketch a graph of a function that satisfies the given conditions.

lim f(x)=2	lim f(x)∞	lim f(x)∞	lim f(x)≕
X⊸≫	Х⊸∞	x2+	x—2-

12) Sketch a graph of a function that satisfies the given conditions. $\lim_{x \to 5} f(x) \text{ does not exist} \quad \text{and} \quad \lim_{x \to 5^+} f(x) = f(5) = 2$ Use a definition of the derivative to set up the limit you would use to find the slope at the given point. Then, using the substitution h = x - a, set up the limit in terms of h, that would find the derivative of f(x) at x = 4.

13)
$$f(x) = \frac{4}{x+3}$$
 at $x = 4$

Use a definition of the derivative to set up the limit you would use to find the slope at the given point. Then, using the substitution h = x - a, set up the limit, in terms of h, that would find the derivative of f(x) at x = -3. After you have set up the limit, for extra credit find the actual slope at the point (-3, -54) by evaluating a definition of the derivative.

14) $f(x) = 3x - 5x^2$ at the point (-3, -54).

15)	t (minutes)	0	2	5	8	12
	v _A (t) (meters/min)	0	100	40	-120	-150

- 4. Train A runs back and forth on an east-west section of railroad track. Train A's velocity, measured per minute, is given by a differentiable function $v_A(t)$, where time t is measured in minutes. Select values for $v_A(t)$ are given in the table above.
 - b) Do the data in the table support the conclusion that train A's velocity is 50 meters per minu some time t with 0 < t < 2? Give a reason for your answer.