Determine the limit algebraically, if it exists.

1) $\lim _{x \rightarrow 4} \frac{x^{2}+4 x-32}{x^{2}-16}$
2) $\lim _{x \rightarrow 0} \frac{\frac{1}{x+6}-\frac{1}{6}}{x}$
3) $\lim _{x \rightarrow 4^{-}} \frac{|x-4|}{x-4}$

Find the indicated limit.
4) a) $\lim _{x \rightarrow+} \frac{7 x}{|x|}$
b) $\lim _{x \rightarrow 0^{-}} \frac{7 x}{|x|}$
c) $\lim _{x \rightarrow 0} \frac{7 x}{|x|}$

Evaluate or determine that the limit does not exist for each of the limits for the given function f.
5)
$f(x)= \begin{cases}-2 x-2, & \text { for } x<1 \\ 1, & \text { for } x=1, \\ -4 x+8, & \text { for } x>1\end{cases}$
(a) $\lim _{x \rightarrow-} f(x)$
$x-7-$
(b) $\lim _{x} f(x)$
$x \rightarrow+$
(c) $\lim f(x)$ $x \rightarrow 7$

Find the limits of $f(x)$

$$
\text { 6) } f(x)= \begin{cases}\frac{x-4}{x-2}, & x \leq 0 \\ \frac{1}{x^{2}}, & x>0\end{cases}
$$

(a) $\lim _{x \rightarrow \infty} f(x)$ $x \rightarrow \infty$
(b) $\lim _{x \rightarrow} f(x)$
$x \rightarrow$
(c) $\lim f(x)$
$x-\boldsymbol{\theta}^{-}$
(d) $\lim f(x)$ $x \rightarrow 0^{+}$

Find the points of discontinuity. Identify each type of discontinuity. Use limits to defend your choice.

$$
\text { 7) } y=\frac{x+4}{x^{2}-14 x+48}
$$

For problems 8 and 9 find all points where the function is discontinuous. Then identify any x-values where the function is not differentiable. Be specific which points are discontinuous and/or which are not differentiable.
8)

$$
f(x)= \begin{cases}\frac{x^{2}-16}{x+4}, & x \neq-4 \\ 10, & x=-4\end{cases}
$$

9)

Find a value for a so that the function $f(x)$ is continuous.
10) $f(x)=\left\{\begin{array}{l}x^{2}-5, x<4 \\ 5 a x, x \geq 4\end{array}\right.$
11) Sketch a graph of a function that satisfies the given conditions.
$\lim _{x \rightarrow \infty} f(x)=2 \quad \lim _{x \rightarrow \infty} f(x)=\infty \quad \lim _{x \rightarrow 2^{+}} f(x)=\infty \quad \lim _{x-2^{-}} f(x)=\infty$
12) Sketch a graph of a function that satisfies the given conditions.
$\lim f(x)$ does not exist and $\quad \lim f(x)=f(5)=2$
$x-5$
$x-5+$

Use a definition of the derivative to set up the limit you would use to find the slope at the given point. Then, using the substitution $h=x-a$, set up the limit in terms of h,that would find the derivative of $f(x)$ at $x=4$.
13) $f(x)=\frac{4}{x+3}$ at $x=4$

Use a definition of the derivative to set up the limit you would use to find the slope at the given point. Then, using the substitution $h=x-a$, set up the limit, in terms of h, that would find the derivative of $f(x)$ at $x=-3$. After you have set up the limit, for extra credit find the actual slope at the point $(-3,-54)$ by evaluating a definition of the derivative.
14) $f(x)=3 x-5 x^{2}$ at the point $(-3,-54)$.

15) (minutes)	0	2	5	8	12
$\mathrm{v}_{\mathrm{A}}(\mathrm{t})$ $($ meters $/ \min)$	0	100	40	-120	-150

4. Train A runs back and forth on an east-west section of railroad track. Train A's velocity, measurec per minute, is given by a differentiable function $v_{A}(t)$, where time t is measured in minutes. Select values for $\mathrm{v}_{\mathrm{A}}(\mathrm{t})$ are given in the table above.
b) Do the data in the table support the conclusion that train A's velocity is 50 meters per minu some time t with $0<\mathrm{t}<2$? Give a reason for your answer.
